\(\int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx\) [41]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 98 \[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=\frac {2 a^3 \cos (c+d x)}{d}+\frac {3 a^3 \cos ^2(c+d x)}{2 d}+\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {2 a^3 \log (\cos (c+d x))}{d}+\frac {3 a^3 \sec (c+d x)}{d}+\frac {a^3 \sec ^2(c+d x)}{2 d} \]

[Out]

2*a^3*cos(d*x+c)/d+3/2*a^3*cos(d*x+c)^2/d+1/3*a^3*cos(d*x+c)^3/d-2*a^3*ln(cos(d*x+c))/d+3*a^3*sec(d*x+c)/d+1/2
*a^3*sec(d*x+c)^2/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3957, 2786, 76} \[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {3 a^3 \cos ^2(c+d x)}{2 d}+\frac {2 a^3 \cos (c+d x)}{d}+\frac {a^3 \sec ^2(c+d x)}{2 d}+\frac {3 a^3 \sec (c+d x)}{d}-\frac {2 a^3 \log (\cos (c+d x))}{d} \]

[In]

Int[(a + a*Sec[c + d*x])^3*Sin[c + d*x]^3,x]

[Out]

(2*a^3*Cos[c + d*x])/d + (3*a^3*Cos[c + d*x]^2)/(2*d) + (a^3*Cos[c + d*x]^3)/(3*d) - (2*a^3*Log[Cos[c + d*x]])
/d + (3*a^3*Sec[c + d*x])/d + (a^3*Sec[c + d*x]^2)/(2*d)

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 2786

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Dist[1/f, Subst[I
nt[x^p*((a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = -\int (-a-a \cos (c+d x))^3 \tan ^3(c+d x) \, dx \\ & = \frac {\text {Subst}\left (\int \frac {(-a-x) (-a+x)^4}{x^3} \, dx,x,-a \cos (c+d x)\right )}{d} \\ & = \frac {\text {Subst}\left (\int \left (-2 a^2-\frac {a^5}{x^3}+\frac {3 a^4}{x^2}-\frac {2 a^3}{x}+3 a x-x^2\right ) \, dx,x,-a \cos (c+d x)\right )}{d} \\ & = \frac {2 a^3 \cos (c+d x)}{d}+\frac {3 a^3 \cos ^2(c+d x)}{2 d}+\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {2 a^3 \log (\cos (c+d x))}{d}+\frac {3 a^3 \sec (c+d x)}{d}+\frac {a^3 \sec ^2(c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.88 \[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=\frac {a^3 (-41+226 \cos (c+d x)+29 \cos (3 (c+d x))+9 \cos (4 (c+d x))+\cos (5 (c+d x))-48 \log (\cos (c+d x))-8 \cos (2 (c+d x)) (7+6 \log (\cos (c+d x)))) \sec ^2(c+d x)}{48 d} \]

[In]

Integrate[(a + a*Sec[c + d*x])^3*Sin[c + d*x]^3,x]

[Out]

(a^3*(-41 + 226*Cos[c + d*x] + 29*Cos[3*(c + d*x)] + 9*Cos[4*(c + d*x)] + Cos[5*(c + d*x)] - 48*Log[Cos[c + d*
x]] - 8*Cos[2*(c + d*x)]*(7 + 6*Log[Cos[c + d*x]]))*Sec[c + d*x]^2)/(48*d)

Maple [A] (verified)

Time = 2.17 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.16

method result size
derivativedivides \(\frac {a^{3} \left (\frac {\tan \left (d x +c \right )^{2}}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+3 a^{3} \left (\frac {\sin \left (d x +c \right )^{4}}{\cos \left (d x +c \right )}+\left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )\right )+3 a^{3} \left (-\frac {\sin \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )-\frac {a^{3} \left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )}{3}}{d}\) \(114\)
default \(\frac {a^{3} \left (\frac {\tan \left (d x +c \right )^{2}}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+3 a^{3} \left (\frac {\sin \left (d x +c \right )^{4}}{\cos \left (d x +c \right )}+\left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )\right )+3 a^{3} \left (-\frac {\sin \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )-\frac {a^{3} \left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )}{3}}{d}\) \(114\)
parts \(-\frac {a^{3} \left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )}{3 d}+\frac {a^{3} \left (\frac {\tan \left (d x +c \right )^{2}}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )}{d}+\frac {3 a^{3} \left (-\frac {\sin \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )}{d}+\frac {3 a^{3} \left (\frac {\sin \left (d x +c \right )^{4}}{\cos \left (d x +c \right )}+\left (2+\sin \left (d x +c \right )^{2}\right ) \cos \left (d x +c \right )\right )}{d}\) \(122\)
parallelrisch \(\frac {a^{3} \left (48 \left (1+\cos \left (2 d x +2 c \right )\right ) \ln \left (\sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )-48 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \cos \left (2 d x +2 c \right )-48 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \cos \left (2 d x +2 c \right )-48 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-48 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+226 \cos \left (d x +c \right )+116 \cos \left (2 d x +2 c \right )+29 \cos \left (3 d x +3 c \right )+9 \cos \left (4 d x +4 c \right )+\cos \left (5 d x +5 c \right )+131\right )}{24 d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(173\)
norman \(\frac {\frac {32 a^{3}}{3 d}-\frac {4 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{d}-\frac {4 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{d}+\frac {20 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{3 d}+\frac {20 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{3 d}}{\left (-1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2} \left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}-\frac {2 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}-\frac {2 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}+\frac {2 a^{3} \ln \left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{d}\) \(180\)
risch \(2 i a^{3} x +\frac {a^{3} {\mathrm e}^{3 i \left (d x +c \right )}}{24 d}+\frac {3 a^{3} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}+\frac {9 a^{3} {\mathrm e}^{i \left (d x +c \right )}}{8 d}+\frac {9 a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{8 d}+\frac {3 a^{3} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}+\frac {a^{3} {\mathrm e}^{-3 i \left (d x +c \right )}}{24 d}+\frac {4 i a^{3} c}{d}+\frac {2 a^{3} \left (3 \,{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{2 i \left (d x +c \right )}+3 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {2 a^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{d}\) \(194\)

[In]

int((a+a*sec(d*x+c))^3*sin(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^3*(1/2*tan(d*x+c)^2+ln(cos(d*x+c)))+3*a^3*(sin(d*x+c)^4/cos(d*x+c)+(2+sin(d*x+c)^2)*cos(d*x+c))+3*a^3*(
-1/2*sin(d*x+c)^2-ln(cos(d*x+c)))-1/3*a^3*(2+sin(d*x+c)^2)*cos(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.06 \[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=\frac {4 \, a^{3} \cos \left (d x + c\right )^{5} + 18 \, a^{3} \cos \left (d x + c\right )^{4} + 24 \, a^{3} \cos \left (d x + c\right )^{3} - 24 \, a^{3} \cos \left (d x + c\right )^{2} \log \left (-\cos \left (d x + c\right )\right ) - 9 \, a^{3} \cos \left (d x + c\right )^{2} + 36 \, a^{3} \cos \left (d x + c\right ) + 6 \, a^{3}}{12 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+a*sec(d*x+c))^3*sin(d*x+c)^3,x, algorithm="fricas")

[Out]

1/12*(4*a^3*cos(d*x + c)^5 + 18*a^3*cos(d*x + c)^4 + 24*a^3*cos(d*x + c)^3 - 24*a^3*cos(d*x + c)^2*log(-cos(d*
x + c)) - 9*a^3*cos(d*x + c)^2 + 36*a^3*cos(d*x + c) + 6*a^3)/(d*cos(d*x + c)^2)

Sympy [F]

\[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=a^{3} \left (\int 3 \sin ^{3}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 3 \sin ^{3}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int \sin ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int \sin ^{3}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))**3*sin(d*x+c)**3,x)

[Out]

a**3*(Integral(3*sin(c + d*x)**3*sec(c + d*x), x) + Integral(3*sin(c + d*x)**3*sec(c + d*x)**2, x) + Integral(
sin(c + d*x)**3*sec(c + d*x)**3, x) + Integral(sin(c + d*x)**3, x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.82 \[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=\frac {2 \, a^{3} \cos \left (d x + c\right )^{3} + 9 \, a^{3} \cos \left (d x + c\right )^{2} + 12 \, a^{3} \cos \left (d x + c\right ) - 12 \, a^{3} \log \left (\cos \left (d x + c\right )\right ) + \frac {3 \, {\left (6 \, a^{3} \cos \left (d x + c\right ) + a^{3}\right )}}{\cos \left (d x + c\right )^{2}}}{6 \, d} \]

[In]

integrate((a+a*sec(d*x+c))^3*sin(d*x+c)^3,x, algorithm="maxima")

[Out]

1/6*(2*a^3*cos(d*x + c)^3 + 9*a^3*cos(d*x + c)^2 + 12*a^3*cos(d*x + c) - 12*a^3*log(cos(d*x + c)) + 3*(6*a^3*c
os(d*x + c) + a^3)/cos(d*x + c)^2)/d

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.04 \[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=-\frac {2 \, a^{3} \log \left (\frac {{\left | \cos \left (d x + c\right ) \right |}}{{\left | d \right |}}\right )}{d} + \frac {6 \, a^{3} \cos \left (d x + c\right ) + a^{3}}{2 \, d \cos \left (d x + c\right )^{2}} + \frac {2 \, a^{3} d^{8} \cos \left (d x + c\right )^{3} + 9 \, a^{3} d^{8} \cos \left (d x + c\right )^{2} + 12 \, a^{3} d^{8} \cos \left (d x + c\right )}{6 \, d^{9}} \]

[In]

integrate((a+a*sec(d*x+c))^3*sin(d*x+c)^3,x, algorithm="giac")

[Out]

-2*a^3*log(abs(cos(d*x + c))/abs(d))/d + 1/2*(6*a^3*cos(d*x + c) + a^3)/(d*cos(d*x + c)^2) + 1/6*(2*a^3*d^8*co
s(d*x + c)^3 + 9*a^3*d^8*cos(d*x + c)^2 + 12*a^3*d^8*cos(d*x + c))/d^9

Mupad [B] (verification not implemented)

Time = 13.28 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.82 \[ \int (a+a \sec (c+d x))^3 \sin ^3(c+d x) \, dx=\frac {\frac {3\,a^3\,\cos \left (c+d\,x\right )+\frac {a^3}{2}}{{\cos \left (c+d\,x\right )}^2}+2\,a^3\,\cos \left (c+d\,x\right )+\frac {3\,a^3\,{\cos \left (c+d\,x\right )}^2}{2}+\frac {a^3\,{\cos \left (c+d\,x\right )}^3}{3}-2\,a^3\,\ln \left (\cos \left (c+d\,x\right )\right )}{d} \]

[In]

int(sin(c + d*x)^3*(a + a/cos(c + d*x))^3,x)

[Out]

((3*a^3*cos(c + d*x) + a^3/2)/cos(c + d*x)^2 + 2*a^3*cos(c + d*x) + (3*a^3*cos(c + d*x)^2)/2 + (a^3*cos(c + d*
x)^3)/3 - 2*a^3*log(cos(c + d*x)))/d